SLAM

STEM Education
The U.S. engineering and science industry is faced with filling a critical skills gap as the baby boomer generation retires and a large portion of talent exits the workforce. The number of engineering graduates in the United States continues its steady decline as the percent of STEM students worldwide grows. In order to address the shortage of tech-savvy workers at home and be competitive in a progressively global economy, our nation needs to encourage students to pursue degrees in science, technology, engineering, and math (STEM) disciplines. The good news is that the job market for these graduates will be strong, reflecting a growing appetite to invest in STEM industries as a means to build a vibrant economy.

To attract and retain talented STEM students, colleges and universities are adopting new methods of teaching and creating new environments for students to learn. What follows are SLAM’s design ideas for STEM institutions that are influencing teaching, learning, innovation, and discovery.
Traditionally, scientists, often seen as impractical dreamers, made discoveries and engineers used those discoveries to inform inventions to solve actual problems. This traditional distinction between scientists and engineers, along with the linear connection between discovery and application, are fading away. Enabled and emboldened by today’s technological advancements, transdisciplinary teams, often including members outside of the STEM disciplines, are accelerating the pace of innovation in science and industry. With demonstrated impact on learning outcomes and research productivity, creating environments that promote transdisciplinary collaboration and innovation is a driving force behind the modern academic building.

A distinctive feature of the future classroom could be the latest generation of visual technology providing images of unprecedented clarity and resolution for students enveloped in a 360-degree visual experience. The visualization/simulation/collaboration theater provides a cutting-edge approach to bringing data to multi-disciplinary teams ranging from visualizing objects from the galaxy to a DNA strand or math concepts.

Many ideas grow better when transplanted into another mind than the one where they sprang up.

— Oliver Wendell Holmes
Traditional didactic learning spaces are not aligned with how the brain works. Most people, on average, retain less than 10 percent of what they are told, so how do we actively engage students so they don’t just remember but learn?

Seat location affects attention, so classrooms and laboratories can be configured with “multiple stages” for instruction and no fixed instructor position. Thus, every seat is the best seat in the house.

Laboratories can be convertible from lecture-style, to lab-style to workshop-style spaces with movable tables. Think of the learning environment as a “black box theater”.

The instructor is not the only star of the show. A student, or group of students, can address the class, lead a discussion, share content, and engage other learners from anywhere in the space. Classrooms and teaching labs should be designed to work as theater or stage.

As students acquire more content online outside the classroom, passive lecture-style learning is giving way to active learning pedagogies. The future classroom will offer seating in collaborative groups, perhaps inspired by Las Vegas dinner theaters where an instructor can be center stage or move throughout the room to “serenade” an individual table. Each table also supports its own intimate experience: low walls and tiered floors separate groups while dedicated writing surfaces and embedded technology become the focal point of the group. Although functioning independently, all tables contribute to the “buzz” of the space. The room works for multiple small groups or as a single team-based learning (TBL) studio where groups engage each other in peer-to-peer learning.

Tell me and I forget. Teach me and I remember. Involve me and I learn.
— Benjamin Franklin
The innovation “playground” is a place to think, feel, and learn in different ways. More than a maker space, the playground is a teaching space where STEM learners discover how to use principles of “design thinking” to create new ideas, inventions, concepts, and designs. Stackable colored-blocks can form the walls of a private learning space that can easily be disassembled to make way for brainstorming and think-tank discussions. Writable surfaces on wheels and mobile units where students store their projects can be assembled to create a gallery for poster and crit sessions. The informal environment, with cement floor, exposed ceilings, and vibrant colored walls, can host formal classes as well as give students the unstructured time to tinker, explore, invent, and learn from failures. In some cases, high bay project spaces on grade with access to outdoor work areas support super-sized projects and imaginations. High-powered computer docking stations with specialized software, teleconferencing, and 3-D printers all enhance active learning and provide the perfect tools for creators and disruptors with new ideas awaiting real-world application.

“I’ll play it first and tell you what it is later.”
— Miles Davis
Fluid connections between STEM disciplines encourage students to connect with each other and increase the chance for faculty/student interactions inside and outside of the classroom. Hybrid labs fuse the lecture and lab environment taking team-based active learning curriculums to the next level. The open-plan fused lab promotes multi-team research. Fixed casework, fume hoods, sinks, and utilities around the perimeter leave the center of the room, equipped with overhead power and moveable furniture, easily reconfigurable to meet specific needs. Adjoining support spaces provide access to shared lab equipment and materials. With the open-plan, natural daylight can fill the labs creating humanistic environments that encourage chance meetings and provide an attractive place for people to learn and discover.

The essence of teaching is to make learning contagious, to have one idea spark another.

— Marva Collins
Learning doesn’t only happen in the classroom. In the most successful STEM facilities, students rendezvous to study and socialize throughout the building, throughout the day. Relationship building is one of the greatest benefits of the university experience. These personal interactions are what set the physical campus environment apart from online degree programs. Among the many ways to build a learning community, providing diverse spaces outside the classroom for students to study, work in teams, or share a meal is a growing trend. The goal is to create learning landscapes where touchdown, study, project and café spaces provide places for students to linger beyond class time. Places where STEM students can build the social relationships that are proven predictors of academic success in challenging STEM programs.

“We should take care not to make the intellect our god; it has, of course, powerful muscles, but no personality. It cannot lead; it can only serve.” — Albert Einstein
Outdoor learning spaces can be very effective in promoting hands-on active learning experiences. A courtyard can provide informal environments to chat with peers about schoolwork, or it can provide the solitude of peaceful space to focus on projects. It can also serve as an outside classroom to hold brainstorming discussions, work on projects in groups or individually. The outdoor environment also serves as a living laboratory. In a native plant meadow, science classes can observe the intricate interdependence of plants, insects, soil, sunlight, and water. A water-saving bio-swale can capture rainwater and use it in the bio-retention gardens, or a green roof terrace can provide an area for experiments and study space for students. Garden-grown herbs and plantings can provide sampling material for students to perform experimental tests, and conduct research.

A garden is a grand teacher.
— Gertrude Jekyll

Nothing ever becomes real till it is experienced.
— John Keats

Partnerships between academic institutions and industry are an influential part of today’s STEM landscape. Before students even depart from the academic experience, they may work side-by-side with a potential employer through research internships and externships. Universities are designating space specifically to nurture these relationships and help them grow.